
Recent Posts
Archives
 Aerodynamics astronomy books chemistry children's stories engineering foreign languages publishing geology history life sciences little mathematics library mathematics meteorology mir books mir publishers philosophy physics physics for everyone physiology problem books progress publishers psychology raduga publishers science science for everyone soviet statistics technology Uncategorized used books
Meta
Trackers on the site…
There are trackers on the site apart from Wordpress Stats. If you don't know what trackers are, or wish not to be tracked go here http://donttrack.us to get tools which allow you to do so.Blogroll
Category Archives: mathematics
Introductory Mathematics for Engineers – Myškis
In this post, we will see the book Introductory Mathematics for Engineers: Lectures in Higher Mathematics by A. D. Myškis. The book is around 800 pages and is very exhaustive in the number of topics it deals in. Starting from functions and … Continue reading
Posted in books, mathematics, mir books, mir publishers
Tagged analytic geometry, complex numbers, continuity, definite integral, Derivatives, determinants, differential equations, differentials, euler's equation, fourier series, fourier transformation, functions, graphs, higher, hilbert space, indefinite integral, interpolation, limits, linear operators, mathematics, matrices, mir books, multiple integrals, partial derivatives, probability, random variables, roots of equations, scalars, series, several variables, solid analytic geometry, systems of linear algebraic equations, triple product, variables, vectors
8 Comments
A Simple NonEuclidean Geometry And Its Physical Basis – Yaglom
In this post, we will see the book A simple nonEuclidean geometry and its physical basis: an elementary account of Galilean geometry and the Galilean principle of relativity by I. M. Yaglom. This book is remarkable in that it relies only on … Continue reading
Posted in books, mathematics, physics, soviet
Tagged bolyai, coparallelograms, cotrapezoids, distance, einstein, Galilean Geometry, galilean relativity, gauss, geometry, hyperbolic geometry, klein, lobachevsky, lorentz transformation, mathematics, mechanics, Minkowski, noneuclidean, relativity, riemann, riemannian geometry
1 Comment
Measure, Lebesgue Integrals and Hilbert Space – Kolmogorov and Fomin
In this post, we will see the book Measure, Lebesgue Integrals and Hilbert Space by A. N. Kolmogorov and S. V. Fomin. About the book: This publication is the second book. of the “Elements of the Theory of Functions and Functional Analysis,” … Continue reading
Posted in books, mathematics, soviet
Tagged fourier series, fubini's theorem, hilbert space, integral equations, jordan measure, L2 space, lebesgue integral, linear functions, mathematics, measurable functions, measure theory, orthogonal functions, rieszfisher theorem, selfadjoint operators, semirings
Leave a comment
The Decomposition of Figures Into Smaller Parts – Boltyanskii and Gohberg
In this post, we will see the book The Decomposition of Figures Into Smaller Parts by V. G. Boltyanskii and I. T. Gohberg. The book is part of the Popular Lectures in Mathematics Series. About the book: This book is devoted to … Continue reading
Posted in books, mathematics, soviet
Tagged borsuks theorem, constant width, convex figures, covering, division, geometry, illumination, mathematics, minkowski plane, unbounded convex figures
3 Comments
Elements Of Applied Mathematics – Zeldovich, Myskis
In this post, we will see the book Elements Of Applied Mathematics by Ya. B. Zeldovich and A. D. Myskis. This book is not a textbook in the ordinary sense of the word but rather a reader in the mathematical sciences. Using … Continue reading
Posted in books, mathematics, mir books, mir publishers
Tagged calculus of variation, complex variables, delta function, differential equations, differentiation, field theory, fourier transformation, functions, integration, mathematics, numerical methods, probability, series, vector product, vectors, zeldovich
Leave a comment
A Course of Differential Geometry and Topology – Mishchenko, Fomenko
In this post we will see A Course of Differential Geometry and Topology – A. Mishchenko and A. Fomenko. Earlier we had seen the Problem Book on Differential Geometry and Topology by these two authors which is the associated problem … Continue reading
Posted in books, mathematics, mir books, mir publishers
Tagged ceva's theorem, cohomology groups, differential geometry, gaussian numbers, general topology, geodesic, homology theory, hypersurfaces, manifold, mathematics, minimal surfaces, mir books, mir publishers, pseudosphere, riemannian geometry, smooth manifolds, tangent bundles, tensor analysis, tensor field, transformation groups, Variational Problems
9 Comments
Problems in Differential Geometry and Topology – Mishchenko, Solovyev, Fomenko
In this post we will see the book Problems in Differential Geometry and Topology by A. S. Mishchenko, Yu. P. Solovyev and A. T. Fomenko About the book This problem book is compiled by eminent Moscow university teachers. Based on … Continue reading