
Recent Posts
 Triángulo De Pascal ( Lecciones Populares De Matemáticas) – Uspenski
 Ecuaciones Algebraicas De Grados Arbitrarios ( Lecciones Populares De Matemáticas) – Kúrosch
 Analisis Matematico En El Campo De Funciones Racionales ( Lecciones Populares De Matemáticas) – Shilov
 A Thousand Thanks!
 ¿ Que Es El Calculo Diferencial? ( Lecciones Populares De Matemáticas) – Boltianski

Join 2,124 other subscribers
Archives
 Aerodynamics astronomy books chemistry children's books children's stories Editorial Mir electronics engineering foreign languages publishing french geology history life sciences little mathematics library malysh publishers mathematics mir books mir publishers philosophy physics popular science problem books progress publishers raduga publishers science science for everyone soviet technology Éditions Mir
Meta
Trackers on the site…
There are trackers on the site apart from Wordpress Stats. If you don't know what trackers are, or wish not to be tracked go here http://donttrack.us to get tools which allow you to do so.Blogroll
Tag Archives: dirichlet problem
Partial Differential Equations of Mathematical Physics – Sobolev
In this post, we will see the book Partial Differential Equations of Mathematical Physics – S. L. Sobolev. About the book The classical partial differential equations of mathematical physics, formulated and intensively studied by the great mathematicians of the nineteenth … Continue reading
Posted in books, mathematics, physics
Tagged boundary value problems, d’Alembert's Method, differential equations, dirichlet problem, equation of heat conduction, fourier series, fouriers method, green's formula, hadamard's example, integral equations, laplace's equation, lebesgue integration, mathematical physics, method of separation of variables, Ostrogradski’s Formula, physics, poisson's equation, potential problems, riemann's method, soviet, spherical functions, vibrations
1 Comment
Potential Theory and Its Application to Basic Problems of Mathematical Physics – Günter
In this post, we will see the book Potential Theory and Its Application to Basic Problems of Mathematical Physics by N. M. Günter. About the book The present book is the translation of N. M. Günter’s monograph “La théorie du … Continue reading
Posted in books
Tagged applications, boundary value problems, differential equations, dirichlet problem, eigenfunctions, eigenvalues, gauss formula, gauss integral, green's functions, heat problem, mathematical physics, mathematics, neumann problem, newtonian potential, nuemann problem, physics, poisson equation, potential theory, robin problem, solutions, stokes formula
1 Comment
Equations of Mathematical Physics – Vladimirov
In this post, we will see the book Equations of Mathematical Physics by V. S. Vladimirov. About the book This book examines classical boundary value problems for differentia equations of mathematical physics. Instead of the traditional means of presentation, we … Continue reading
Posted in books, mathematics, physics, soviet
Tagged boundary value problems, cauchy problem, differential equations, dirichlet, dirichlet problem, elliptic equations, fourier method, Fredholm’s Theorems, Functions of Slow Growth, generalized functions, green's function, heat equation, helmholtz equation, HilbertSchmidt Theorem, hyperbolic equations, integral equations, laplace equation, linear differential operators, mathematical physics, newtonian potential, parabolic equations, poisson equations, spherical functions, strumlioville problem, tempered distributions
Leave a comment
Equations of Mathematical Physics – Bitsadze
We now come to Equations of Mathematical Physics by A. V. Bitsazde. About the book: The present book consists of an introduction and six chapters. The introduction discusses basic notions and definitions of the traditional course of mathematical physics and … Continue reading
Posted in books, mathematics, mir books, mir publishers, physics
Tagged boundary conditions, cauchy riemann system, cauchy's theorem, dirichlet problem, elliptic linear PDE, fredholm theorems, green's function, heat equation, hyperbolic pde, integral equations, laplace equation, linear, mathematical physics, parabolic pde, partial differential equations, pde, poisson firmula, potential function
7 Comments