Analyse Mathématique: Fonctions D’une Variable – Tome 2 – 3e Partie by G. Chilov (Shilov)

Dans cet article, nous verrons le livre Analyse Mathématique: Fonctions D’une Variable – Tome 2 – 3e Partie par G. Chilov (Shilov).

À propos du livre

La troisième partie du livre • Fonctions d’une variable t es basée sur les mêmes principes que les deux premières pricédemment parues. Ils sont exprimés dans l’avant-propos du premier tome. La numérotation des chapitres du présent volume (12-16) continue celle du précédent (1-11).
Dans la troisième partie, le rôle principal appartient au chapitre 12 «Structures fondamentales de l’analyse 11 où l’on considère les espaces vectoriels, les espaces métriques (contrairement au chapitre 3 de la première partie, ici ce sont des espaces fonctionnels, et non pas des ensembles de points dans un espace de dimension finie, qui en servent de modèles), les espaces normés, les algèbres
normées et, enfin, les espaces hilbertiens. Les algèbres normées sont appliquées à la théorie des opérateurs linéaires dans un espace normé; en particulier, le «calcul opérationnel t des fonctions analytiques dans une algèbre normée, appliqué à l’algèbre des opérateurs linéaires, conduit à des théorèmes du genre de l’alternative de Fredholm. L’étude de l’espace vectoriel normé des suites bornées et celle des fonctionnelles sur cet espace sont liées aux notions do limite généralisée et de sommation généralisée des séries.
Dans le chapitre 13 t Equations différentielles ~. on établit les théorèmes principaux sur les solutions des équations différentielles ordinaires pour les fonctions à valeurs dans un espace normé. La solution d’une équation linéaire à coefficient opératoriel constant s’exprime par l’exponentielle l’un opérateur; en l’explicitant nous obtenons les formules pour les solutions d’une équation linéaire à coefficients constants, d’un système d’équations de ce type et d’une équation d’ordre supérieur. Pour une équation linéaire à coefficient opératoriel variable, on construit la méthode de variation de la constante.
C’est essentiellement les séries de Fourier que l’on élodie dans le chapitre 14 « Développements orthogonaux ~ ; on considère de divers types de convergence et de sommabilité de ces séries.
Le chapitre 15 t Transformation de Fourier t, parallèlement à la théorie réelle ordinaire, traite des problèmes liés au domaine complexe, en particulier à la transformation de Laplace.
Dans le chapitre 16 « Courbes gauches t , nous expœons la théorie de la courbure dans un espace à plusieurs dimensions.
Comme dans les deux premières parties, l’exposé est accompagné d’exercices. On trouve les réponses et les indications correspondantes à la fin du livre.

Le livre a été traduit du russe par Vitali Kharine.

L’édition française a été publiée en 1978 par les éditions Mir.

Crédits à l’uploader d’origine.

Vous pouvez obtenir le livre ici.

(J’ai utilisé la traduction automatique, toutes mes excuses pour les erreurs.)

Suivez-nous sur Internet Archive: https://archive.org/details/@mirtitles

Suivez-Nous Sur Twitter: https://twitter.com/MirTitles

Écrivez-nous: mirtitles@gmail.com

Rejoignez-nous sur GitLab: https://gitlab.com/mirtitles/

Ajoutez de nouvelles entrées au catalogue de livres détaillé ici.

Contenu

 

 

About The Mitr

I am The Mitr, The Friend
This entry was posted in books, french, mathematics and tagged , , , , , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.